Calculus

Partition, Critical \& Inflection Numbers

What Are They?

Partition Number	Where $f(x)=0$ or where $f(x)$ is undefined	x values where f might change sign
Critical Number	Where $f^{\prime}(x)=0$ or where $f^{\prime}(x)$ is undefined	x values where f^{\prime} might change sign
Inflection Number	Where $f^{\prime \prime}(x)=0$ or where $f^{\prime \prime}(x)$ is undefined	x values where $f^{\prime \prime}$ sign

- Partition Number - Determines open intervals where $f(x)$ does not change sign
- Critical Number - Really just a partition number for $f^{\prime}(x)$, but in the domain of f
- Inflection Number - Really just a partition number for $f^{\prime \prime}(x)$, but in the domain of f

What Can We Use These For?

Partition Number	\rightarrow Vertical Asymptotes \rightarrow x-intercepts
Critical Number	\rightarrow Minimums and Maximums \rightarrow Intervals where $f(x)$ is increasing or decreasing
Inflection Number	\rightarrow Minimums and Maximums \rightarrow Intervals where $f(x)$ is concave up or concave down

How Do We Use Them?

Partition Numbers	Critical Numbers	Inflection Numbers
1. $f(x)=0$ and	1. Find $f^{\prime}(x)$	1. Find $f^{\prime \prime}(x)$
solve for x	2. Set $f^{\prime}(x)=0$ and solve for x	2. Set $f^{\prime \prime}(x)=0$ and solve for x
- These are the x-	3. Find any domain restrictions for $f^{\prime}(x)$	3. Find any domain restrictions for $f^{\prime \prime}(x)$
intercepts	4. Make sure all numbers found in 2. and	4. Make sure all numbers found in 2. and
2. Find any domain	3. are in the domain of f	3. are in the domain of f
restrictions for $f(x)$	- These are the critical numbers for f	- These are the inflection numbers for f
	5. Test values in $f^{\prime}(x)$ on either side of	5. Test values in $f^{\prime \prime}(x)$ on either side of each
	each critical number.	inflection number.
	6. Use the First Derivative Test table below	(6. Use the Second Derivative Test table
	to analyze the results	below to analyze the results

First Derivative Test

$\boldsymbol{f}(\boldsymbol{x})$ left of \mathbf{c}	$\boldsymbol{f (x)}$ right of \mathbf{c}	$\boldsymbol{f}(\boldsymbol{c})$
Decreasing	Increasing	Local minimum at c
Increasing	Decreasing	Local maximum at c
Decreasing	Decreasing	Not an extremum
Increasing	Increasing	Not an extremum

Second Derivative Test

$\boldsymbol{f}^{\prime}(\boldsymbol{c})$	$\boldsymbol{f}^{\prime \prime}(\boldsymbol{c})$	graph of \boldsymbol{f} is	$\boldsymbol{f}(\boldsymbol{c})$ is
0	+	Concave Up	Local Minimum
0	-	Concave Down	Local Maximum
0	0	$?$	Test Fails

Tel:
STEM SC (N): (760) 750-4101
STEM SC (S): (760) 750-7324

