

California State University SAN MARCOS

Calculus

Partition, Critical & Inflection Numbers

What Are They?

Partition Number	Where $f(x) = 0$ or where $f(x)$ is undefined	x values where f <u>might</u> change sign
Critical Number	Where $f'(x) = 0$ or where $f'(x)$ is undefined	x values where f' might change sign
Inflection Number	Where $f''(x) = 0$ or where $f''(x)$ is undefined	x values where f'' might change sign

• **Partition Number** - Determines open intervals where f(x) does <u>not</u> change sign

• Critical Number - Really just a partition number for f'(x), but in the domain of f

• Inflection Number - Really just a partition number for f''(x), but in the domain of f

What Can We Use These For?

Partition Number	\rightarrow Vertical Asymptotes
	\rightarrow x-intercepts
Critical Number	\rightarrow Minimums and Maximums
	\rightarrow Intervals where $f(x)$ is increasing or decreasing
Inflection Number	\rightarrow Minimums and Maximums
Inflection Number	\rightarrow Intervals where $f(x)$ is concave up or concave down

How Do We Use Them?

Partition Numbers	Critical Numbers	Inflection Numbers
1. $f(x) = 0$ and	1. Find $f'(x)$	1. Find $f''(x)$
solve for x	2. Set $f'(x) = 0$ and solve for x	2. Set $f''(x) = 0$ and solve for x
• These are the x-	3. Find any domain restrictions for $f'(x)$	3. Find any domain restrictions for $f''(x)$
intercepts	4. Make sure all numbers found in 2. and	4. Make sure all numbers found in 2. and
2. Find any domain	3. are in the domain of f	3. are in the domain of f
restrictions for $f(x)$	• These are the critical numbers for f	• These are the inflection numbers for f
	5. Test values in $f'(x)$ on either side of each critical number.	5. Test values in $f''(x)$ on either side of each inflection number.
	6. Use the First Derivative Test table below to analyze the results	6. Use the Second Derivative Test table below to analyze the results

First Derivative Test

f(x) left of c	f(x) right of c	f(c)
Decreasing	Increasing	Local minimum at c
Increasing	Decreasing	Local maximum at c
Decreasing	Decreasing	Not an extremum
Increasing	Increasing	Not an extremum

Second Derivative Test

f'(c)	f''(c)	graph of f is	f(c) is
0	+	Concave Up	Local Minimum
0	-	Concave Down	Local Maximum
0	0	?	Test Fails

Concave Up Concave Down

